Quoc Tran Anh Le
Bạn đã like Trang để nhận thông báo mới nhất về cuộc thi chưa?Cuộc thi Toán Tiếng Anh VEMC | FacebookCó câu hỏi hay? Gửi ngay chờ chi (mình đang thiếu câu hỏi...):[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu-------------------------------------------------------------------[Toán.C42 _ 1.2.2021]Trích VEMC, 2018: Jack Sparrow và Barbossa tìm được chiếc rương chứa 105 đồng xu bằng vàng Aztec. Cả hai đều muốn chiếm các đồng tiền vàng cho riêng mình. Jack nghĩ ra một trò chơi với luật chơi như...
Đọc tiếp

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Cherry
2 tháng 2 2021 lúc 20:30

em like rùi sj

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
2 tháng 2 2021 lúc 19:48

Nếu được dùng giai thừa thì...

\(\left(\left(\left(\left(2!\right)!\right)!\right)...\right)!\) = :))

Bình luận (1)
Hồng Phúc
2 tháng 2 2021 lúc 19:53

Phải chăng là số này: \(\left(2^{22!}\right)!\)

Bình luận (10)
Cherry
2 tháng 2 2021 lúc 20:29

Em like rùi ạ

Bình luận (2)
Quoc Tran Anh Le
Xem chi tiết
tthnew
28 tháng 1 2021 lúc 18:38

Đây là cách của em.

Ta chứng minh bất đẳng thức sau:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}+\dfrac{27}{16}\cdot\dfrac{\left(a-b\right)^2}{a+b+c}\)

\(\bullet\) Nếu \(c\ne \text{mid}\{a,b,c\}\) thì \(\left(a-c\right)\left(b-c\right)\ge0\Rightarrow\left(a-b\right)^2\le a^2+b^2+c^2-ab-bc-ca\) từ đây đưa về đối xứng và chứng minh dễ dàng.

\(\bullet\) Nếu \(c= \text{mid}\{a,b,c\}.\) Chuẩn hóa \(a+b=1\Rightarrow0\le c\le1.\) Đặt \(x=ab\Rightarrow0< x\le c\left(1-c\right)\)

Cần chứng minh

\(f(x)=108\,{x}^{2}+ \left( 16\,{c}^{3}+84\,{c}^{2}+12\,c-83 \right) x+ \left( c+1 \right) \left( 16\,{c}^{4}+8\,{c}^{3}-16\,{c}^{2}-19\,c+ 16 \right) \ge 0\)

\(f'(x)=16\,{c}^{3}+84\,{c}^{2}+12\,c+216\,x-83 \)

*Nếu $0 \le c \le \dfrac{1}{2}$ thì \(f'\left(x\right)\le\left(2c-1\right)\left(8c^2-62c+83\right)\le0\)

Khi đó $f(x)$ là hàm nghịch biến nên \(f\left(x\right)\ge f\left(c\left(1-c\right)\right)=2\left(8c^2-11c+8\right)\left(2c-1\right)^2\ge0\)

*Nếu $\dfrac{1}{2} \le c \le 1$ thì \(\Delta_x= \left( 64\,{c}^{4}-992\,{c}^{3}-1740\,{c}^{2}-788\,c-23 \right) \left( 2\,c-1 \right) ^{2}\le 0\)

ta có điều phải chứng minh

:D

Bình luận (2)
Trần Minh Hoàng
28 tháng 1 2021 lúc 19:27

Lâu rồi mới đăng bài vì mấy bài kia khó quá :vv

C39: 

Đặt \(\left\{{}\begin{matrix}x+y+z=a>0\\y+z+4x=b>0\\z+x+16y=c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{b-a}{3}\\y=\dfrac{c-a}{15}\\z=\dfrac{21a-5b-c}{15}\end{matrix}\right.\).

Khi đó áp dụng bđt AM - GM ta có:

\(P=\dfrac{5b+c-6a}{15a}+\dfrac{4a-b}{3b}+\dfrac{16a-c}{15c}=\left(\dfrac{b}{3a}+\dfrac{4a}{3b}\right)+\left(\dfrac{c}{15a}+\dfrac{16a}{15c}\right)-\left(\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{1}{15}\right)\ge\dfrac{4}{3}+\dfrac{8}{15}-\dfrac{4}{5}=\dfrac{16}{15}\).

Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}b=2a\\c=4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z+4x=2\left(x+y+z\right)\\z+x+16y=4\left(x+y+z\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\4y=x+z\end{matrix}\right.\Leftrightarrow21x=35z=15z\).

 

Bình luận (2)
Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
3 tháng 2 2021 lúc 19:40

C47: Dễ thấy x > 1.

Áp dụng bất đẳng thức AM - GM ta có \(P=\dfrac{x^2+\dfrac{1}{x^2}}{x-\dfrac{1}{x}}=\dfrac{x^4+1}{x^3-x}=\dfrac{\left(x^2-1\right)^2}{x^3-x}+\dfrac{2x^2}{x^3-x}=\dfrac{x^2-1}{x}+\dfrac{2x}{x^2-1}\ge2\sqrt{2}\).

Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{x^2-1}{x}=\dfrac{2x}{x^2-1}\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2+\sqrt{3}}\\y=\dfrac{1}{\sqrt{2+\sqrt{3}}}\end{matrix}\right.\).

Vậy Min P = \(2\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2+\sqrt{3}}\\y=\dfrac{1}{\sqrt{2+\sqrt{3}}}\end{matrix}\right.\)

 

 

Bình luận (0)
Trần Minh Hoàng
3 tháng 2 2021 lúc 19:44

C48: Đề bài là tìm GTLN chứ nhỉ?

Đặt x = a; 2y = b; 3z = c (a, b, c > 0). Khi đó a + b + c = 2.

Ta có \(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(b+c\right)\left(b+a\right)}}\)

\(\le_{AM-GM}\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}+\dfrac{a}{b+a}\right)=\dfrac{1}{2}.3=\dfrac{3}{2}\).

Đẳng thức xảy ra khi và chỉ khi a = b = c = \(\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{3};y=\dfrac{1}{3};z=\dfrac{2}{9}\).

Vậy Max S = \(\dfrac{3}{2}\Leftrightarrow x=\dfrac{2}{3};y=\dfrac{1}{3};z=\dfrac{2}{9}\).

 

Bình luận (0)
Quoc Tran Anh Le
3 tháng 2 2021 lúc 17:53

Các anh chị giáo viên box Toán đánh giá câu trả lời của các bạn giúp em nhé :>

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Minh Hiếu
1 tháng 11 2021 lúc 5:22

khó thật đấy anh 

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
tthnew
23 tháng 1 2021 lúc 14:17

Gõ lại lần cuối, không được nữa nghỉ chơi hoc24:v

Bất đẳng thức cần chứng minh tương đương với $$a^3b^2+b^3c^2+c^3a^2\geq abc(a^2+b^2+c^2)$$Ta có$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$= \displaystyle\LARGE{\sum} {{a^3}} \left( {{b^2} - 2bc + {c^2}} \right) -\displaystyle \LARGE{\sum} {{a^2}} ({b^3} - {c^3})$Mặt khác ta có đẳng thức sau

$${a^2}\left( {{b^3} - {c^3}} \right) + {b^2}\left( {{c^3} - {a^3}} \right) + {c^2}\left( {{a^3} - {b^3}} \right) = {a^2}{\left( {b - c} \right)^2} + {b^2}{\left( {c - a} \right)^2} + {c^2}{\left( {a - b} \right)^2}$$Từ đó dễ dàng thu được$$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$$$= {a^2}{\left( {b - c} \right)^2}\left( {a - b + c} \right) + {b^2}{\left( {c - a} \right)^2}\left( {b - c + a} \right) + {c^2}{(a - b)^2}\left( {c - a + b} \right)$$$$= {S_a}{\left( {b - c} \right)^2} + {S_b}{\left( {c - a} \right)^2} + {S_c}{\left( {a - b} \right)^2}$$Với $${S_a} = {a^2}\left( {a - b + c} \right)$$$${S_b} = {b^2}\left( {b - c + a} \right)$$$${S_c} = {c^2}\left( {c - a + b} \right)$$Do $a,$$b,$$c$ là độ dài ba cạnh tam giác nên rõ ràng $S_a,S_b,S_c$ không âm. Ta thu được điều hiển nhiên.

Bình luận (4)
Quoc Tran Anh Le
Xem chi tiết
tthnew
27 tháng 1 2021 lúc 12:01

Xét hiệu hai vế bất đẳng thức đã cho ta được:

\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)

Đẳng thức xảy ra khi $a=b=c.$

Bình luận (0)
tthnew
27 tháng 1 2021 lúc 12:05

Cách khác. 

Quy đồng, ta cần chứng minh:

\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)

Sử dụng bất đẳng thức AM-GM, ta có:

\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)

Xong :D

 

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Skyler
24 tháng 1 2021 lúc 13:16

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

\(\Rightarrow0-1-13-61-253-1017\)

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

\(\Rightarrow\text{32-12-136-176-186-196}\)

Bình luận (1)
Skyler
24 tháng 1 2021 lúc 13:24

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

Câu này sai nhé !

Phài là : Điền số còn thiếu vào quy luật sau: 12 - 32 - 136 - 176 - ? - 196

Bình luận (1)
Trương Huy Hoàng
24 tháng 1 2021 lúc 15:27

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

0 - 1 - 13 - 61 - 253 - 1021

Chắc đúng :)

Bình luận (5)
Quoc Tran Anh Le
Xem chi tiết
tthnew
24 tháng 1 2021 lúc 12:50

Xí câu dễ trước

Câu 31.

a) Thay $b=\dfrac{5-3a}{4}$ vào và rút gọn thì cần chứng minh $(5a-3)^2\geqslant 0.$

b) Ta có: \(5^2=\left(2+3\right)\left(2a^2+3b^2\right)\ge\left(2a+3b\right)^2\Rightarrow2a+3b\le5\)

Đẳng thức xảy ra khi \(a=b=1.\)

Bình luận (0)
tthnew
24 tháng 1 2021 lúc 13:24

Bài 33.

Chuyển về pqr, cần chứng minh:

\({\dfrac { \left( {p}^{2}-3\,q \right) \left( {p}^{3}q-{p}^{2}r-2\,p{q} ^{2}+6\,qr \right) }{2qr \left( {p}^{2}-2\,q \right) }}\geqslant 0 \)

Đây là điều hiển nhiên nếu khai triển biểu thức \({p}^{3}q-{p}^{2}r-2\,p{q}^{2}+6\,qr\) ta sẽ được một đa thức với tất cả hệ số đều dương.

Bình luận (0)
tthnew
24 tháng 1 2021 lúc 13:21

Câu 32. 

BĐT \(\Leftrightarrow a^2+b^2+c^2\le1^2+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2\)

\(VP=c^2\cdot\dfrac{1}{9c^2}+b^2\cdot\dfrac{1}{4b^2}+a^2\cdot\dfrac{1^2}{a^2}\)

\(=\dfrac{\left(c^2-b^2\right)}{9c^2}+\left(b^2-a^2\right)\left(\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)+a^2\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)\)

\(\ge\left(c^2-b^2\right)\cdot\left(\dfrac{1}{3c}\right)^2+\dfrac{\left(b^2-a^2\right)\left(\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{2}+\dfrac{a^2\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{3}\)

\(\ge\left(c^2-b^2\right)+2\left(b^2-a^2\right)+3a^2=a^2+b^2+c^2\)

Dấu bằng không xảy ra nên ban đầu em tưởng đề sai.

Bình luận (1)